Constellation Copper Corporation

Resource Estimate Centennial Deposit

Lisbon Valley, Utah

Prepared for:

Constellation Copper Corporation

3900 S. Wadsworth Blvd., Suite 495 Lakewood, Colorado 80235 1-720-228-0055

Prepared by:

SRK Consulting

7175 West Jefferson Ave., Suite 3000 Lakewood, Colorado USA 80235

Project Reference No. 162301

February 2006

Executive Summary

SRK Consulting (US), Inc. ("SRK") has been retained by Constellation Copper Corporation ("CCC") to complete a resource estimation of the Centennial copper deposit, one of three deposits that comprise the Lisbon Valley Mine in San Juan County, Utah. The Lisbon Valley Mine is 100% owned by CCC, through its subsidiary Lisbon Valley Mining Company LLC ("LVMC"). In June 2002, CCC changed its name from Summo Minerals Corporation.

This report contains information that is current through the end of 2005.

Geology

Copper mineralization at the Centennial deposit is hosted by permeable sandstone units within the Cretaceous Dakota Sandstone and Burro Canyon Formation. Copper carbonate and oxide minerals are found generally within 150 feet of the surface and sulfide minerals below that depth. Oxidation minerals may be found at greater depths near fault structures.

The Centennial deposit is located in the Lisbon Valley anticline, a salt anticlinal structure. The Lisbon Valley Fault is parallel to the anticlinal axis and was a conduit for mineralizing fluids. The deposit is bounded on the west by the Lisbon Valley Fault.

Resources

The drillhole database was received from CCC in four files: collar locations; downhole surveys; assays; and lithology. SRK also received files containing acid soluble copper assays and a file containing codes for oxide/reduced properties from the geologic logging of drillhole chips. There are 609 holes that fall within the block model limits.

The mineral resource for the Centennial deposit was estimated with a computer generated block model using Maptek's Vulcan software. The total measured and indicated resource at a cutoff of 0.100% copper are 37,871,000 tons at 0.440% copper, with an additional inferred resource of 3,932,000 tons at 0.309% copper.

I

Table of Contents

Ex	ecutive Summary	I
1	Introduction & Terms of Reference	1-1
	1.1 Scope of Work	1-1
	1.2 Sources of Information	
	1.3 Effective Date	1-2
2	Property Description & Location	2_1
2	2.1 Property Location	
2	Historia Minaral Pasauras Estimatos	2 1
ა	A Historic Mineral Resource Estimates	3-1
	3.1 HISTORIC MILLERAL RESOURCE ESTIMATES	
4	Geologic Setting	4-1
	4.1 Regional Geology	4-1
	4.2 Local Geology	4-1
	4.2.1 Local Stratigraphy	4-1
	4.2.2 Local Structure	4-2
5	Mineralization	5-1
6	Drilling	6-1
U	Diming	
7	Mineral Resource Estimate	7-1
	7.1 Topographic Data	7-1
	7.2 Drillhole Database	7-1
	7.3 Drillhole Sample Statistics	7-2
	7.4 Geological Model	7-2
	7.5 Oxidation Model	7-3
	7.6 Structural Model	7-4
	7.7 Unassayed Intervals	
	7.8 Compositing	
	7.9 Specific Gravity	
	7.10 Resource Estimation Strategy	
	7.11 Valiography	
	7.12 Copper Grade Shell	7-0 7 7
	7.15 Grade Estimation	
	7.14 Model Vernication	7-10 7-10
	7.16 Mineral Resource Statement	7-11
8	Recommendations	8-1
9	References	9-1
40	Cleasery	40.4
10	01035al y	

List of Appendices

Appendix A

Listing of Drillholes

Appendix B Oxidation Data

Appendix C Drillholes with Questionable Intervals

Appendix D Variography

List of Tables

Fable 3.1.1: Geologic Resources	3-2
Table 4.2.1.1: Constellation Copper Corporation, Lisbon Valley Copper Mine, Stratigraphy of the	е
Deposit Area	4-2
Table 6.1: Constellation Copper Corporation, Lisbon Valley Copper Mine, Centennial Drilling	
Programs	.6-1
Table 7.2.1: Centennial Drillhole Statistics	7-2
Fable 7.3.1: Centennial Drillhole Sample Statistics	7-2
Table 7.4.1: Lithologic Codes	7-3
Table 7.5.1: Statistics for the ASCu database	7-4
Table 7.8.1: Statistics for the 20 foot Fixed Length Composites	7-5
Table 7.12.1: Search Ellipsoid Parameters for Indicator Kriging	7-6
Table 7.13.1: Block Domains per Structural Zone and Oxidation Properties	7-8
Table 7.13.2: Parameters for Copper Estimation with Inverse Distance Cubed	7-9
Table 7.13.3: Parameters for Copper Estimation with Kriging	'-10
Table 7.16.1: Measured, Indicated and Inferred Resources for the Centennial Deposit	'-12
Table 7.16.2: Measured and Indicated Resources within the Current Pit Outline and at End of	
2005	7-13
Table 7.16.3: Measured and Indicated Resources Classified by Oxidation State	'-1 3
Table 7.16.4: Measured and Indicated Resources within the End of 2005 Pit Outline Classified I	by
Oxidation State7	7-14
Table 7.16.5: Measured and Indicated Resource by Rock Type at 0.100% Copper Cutoff7	'-1 4
Table 7.16.6: Measured and Indicated Resource by Rock Type at 0.100% Copper Cutoff within	
the End of 2005 pit	7-15

List of Figures

Figure 2-1:	Location Map of the Lisbon Valley Mine	2-2
Figure 4-1:	Stratigraphy of the Lisbon Valley Mine	4-4
Figure 6-1:	Drillhole Location Map of the Centennial Deposit	6-3
Figure 7-1:	Drillhole Location Map with Block Model Limits	7-16
Figure 7-2:	Drillhole Location Map with Cross-Section Lines	7-17
Figure 7-3:	Typical Geologic Cross-Section 18	7-18
Figure 7-4:	Cross-Section 18 through the Centennial Deposit with Oxidation Zones	7-19
Figure 7-5:	Cross-Section 18 with Structural Zones of the Centennial Deposit Figure 7-6:	
	Structural Subdomains	7-20
Figure 7-6:	Structural Subdomains	7-21
Figure 7-7:	Cross-Section 18 through the Centennial Deposit, Showing Block Copper Grades	5.7-22

1 Introduction & Terms of Reference

SRK Consulting ("SRK") has been retained by Constellation Copper Corporation ("CCC") to complete a resource estimate on the Centennial Copper Deposit, one of three deposits at the Lisbon Valley Mine, located in San Juan County, Utah. In addition, SRK has been requested to produce a geologic block model using the drillhole database and cross-sections furnished by CCC.

1.1 Scope of Work

The scope of work undertaken by SRK involved the following aspects of the project:

- Review and statistical analysis of drillhole data;
- Geologic interpretation of the database;
- Development of fault surfaces and wireframe solids of lithologic units and incorporation in a block model;
- Development of block codes for oxidation state;
- Variography;
- Resource Estimation and verification of estimation methodology;
- Classification of resources according to CIM standards; and
- Volume and tonnage estimates.

SRK has not independently verified the underlying data, including sampling procedures, laboratory Quality Assurance/Quality Control ("QA/QC"), assay data, assignment of oxide/sulfide codes and topographic data.

1.2 Sources of Information

This report has been based on:

- Site visit to the Lisbon Valley site and Centennial Pit;
- Drillhole database furnished by CCC, including collar locations, downhole surveys, total copper ("TCu") assays, acid soluble copper assays, two variables (Kmin and Tmin), oxidation codes based on drillhole chips and lithologic information;
- Oxide/sulfide codes from CCC's block model;
- Drillhole cross-sections furnished by CCC;
- Topographic data in digital format from CCC;

- Statistical and geostatistical analysis of the data;
- Construction of a grade model by SRK from composited assays; and
- Classification of mineral resources.

1.3 Effective Date

Assay data and topographic data are current as of December 31, 2005.

2 **Property Description & Location**

2.1 **Property Location**

The Centennial deposit is one of three pits at the Lisbon Valley Mine located in San Juan County, Utah approximately 40 miles south of Moab. Figure 2-1 is a map showing the location of the property.

3 Historic Mineral Resource Estimates

3.1 Historic Mineral Resource Estimates

Western Services Engineering, Inc. ("WSE") produced an ore reserve evaluation and initial pit design for the Lisbon Valley deposits in December 1994. The report was intended to bring the property to feasibility study status.

Kelsey Engineering, Inc. ("KE") produced a geologic resource in 1995, incorporating new drillhole data and using the same estimation parameters developed by WSE. KE used grade envelopes based on 0.100% copper that had been updated by WSE and CCC, (then Summo) geologists since the last estimation. In 1996, KE updated their resource with new drilling and updated grade outlines. The 20 foot bench composites were examined by Summo personnel and a consulting geologist to code the composites as inside or outside the mineralized zones, and as oxidized or reduced if inside. Estimation parameters were not modified from the earlier work.

The Winters Company ("TWC") performed a due diligence technical audit of the Lisbon Valley Project in 1997 and suggested that a new study be done to improve local grade estimates. In 2000 Winters, Dorsey & Company, LLC ("WDC") undertook a new resource estimation for the Lisbon Valley Deposits. The grade envelopes were adjusted by WDC in the following iterative process. WDC coded the original drillhole assay intervals as being inside or outside the 0.100 grade envelope. The intervals were then examined on a hole-by-hole basis and the codes adjusted for assay intervals adjacent to the boundaries that were less than 0.100% copper. The assay database was then composited on 20 foot lengths downhole, with breaks at the grade envelope. The grade envelopes were then checked against the new composites and the boundaries were adjusted to conform to the composites. Table 3.1.1 summarizes the resource estimates from the various companies.

Pincock, Allen & Holt ("PAH") completed a technical report in September 2005 based on the WDC work. In their audit of the resource they found that the composite database did not include dilution and therefore adjusted the mineable reserve by adding 10% more tons at 0.00% grade.

		Cutoff			
		Copper	Tons		
Model	Classification	(%)	(000's)	Copper (%)	Copper (000's lbs)
WSE (1994)	Unstated Resource	0.100	26,907	0.460	247,544
	Unstated Reserve	0.100	25,817	0.465	240,434
KE (1995)	Unstated Resource	0.100	29,569	0.437	258,162
	Unstated Reserve	0.100	27,409	0.445	243,718
KE (1996)	Unstated Resource	0.100	32,966	0.428	282,187
	Unstated Reserve	0.100	32,521	0.429	278,956
WDC (2000)	M&I	0.100	31,870	0.515	328,417
	P&P	0.100	27,505	0.537	295,404
РАН	M&I	0.100	31,870	0.515	328,417
	P&P	0.100	30,300	0.490	295,000

Table 3.1.1: Geologic Resources

M&I: Measured and Indicated

P&P: Proven and Probable

•

4 Geologic Setting

4.1 Regional Geology

The Lisbon Valley project is located in the Paradox Basin, a northwest-trending sequence of sedimentary rocks and evaporite deposits. Thick evaporite deposits of salt, potash and gypsum were deposited in the basin during Pennsylvanian time. The evaporites were deformed during regional compression and formed "salt" anticlines. The Lisbon Valley Anticline is one of these structures.

4.2 Local Geology

4.2.1 Local Stratigraphy

The Lisbon Valley copper deposits are hosted by the Cretaceous age Burro Canyon and Dakota Formations. The underlying Jurassic age Morrison Formation and the overlying Cretaceous Mancos shale contain minor amounts of copper. The lithologies consist of interbedded sandstone, siltstone, shale, and coal. The stratigraphy of the Lisbon Valley area is summarized in Figure 4-1. The lithologies have been divided and numerically coded into 17 definable units for the purposes of mapping and logging. The units are summarized in Table 4.2.1.1.

February 2006

Table 4.2.1.1:	Constellation Copper	Corporation, Lisbon	Valley Copper Mine,
Stratigraphy of	of the Deposit Area		

Formation	Unit	Lithology	Thickness (ft)	Copper Mineralization
Quarternary	1	Red and yellow sand and silt aeolian	0-40	None
Quarternary	1	and alluvial	0-40	None
Mancos	2	Black to brownish green shale with trace	0-70	Sporadic low-
Walleos	2	amounts of gypsum and copper	0 /0	grade
Dakota	3	Buff to white sandstone may have	15-20	None
	C	black shale at base	10 20	
Dakota	4	Buff to white sandstone, minor grav	15-20	Local
		shale		
Dakota	5	Buff sandstone	15-20	Local at base
Dakota	6	Coal, may grade into carbonaceous shale	5-20	Minor at top
Dakota	7	Light gray shale, may grade into	10-20	None
		sandstone		
Dakota	8	Coal, similar to unit 6, but is slightly	5-20	Low-grade
		shaly or sandy, with pyrite balls		
Dakota	9	Light gray shale, grading into fine-	5-10	None
		grained sandstone		
Dakota10Sandstone with local mudstone, units 9		0-15	Local	
		and 10 are usually indistinguishable		
Dakota	11	White or buff sandstone, with shale or	2-35	Major ore host
		organics		
Dakota	12	Greenish shale and sandstone, may be	5-20	Minor
D 1	10	pyritic	2 0 5 0	
Dakota	13	White to buff sandstone,	20-50	Major ore host
		for alight arrange calor		
During Comment	1.4	Tor slight orange color	70.120	Minan
Burro Cariyon	14	into limestone and conglements with	70-120	WIIIOT
		chert		
Burro Canyon	15	White sandstone may have up to 3	90-150	Major ore host
Durio Cariyon	15	shale members	90 150	whajor ore nost
Burro Canyon	16 Similar to unit 15, not distinguished by 10-30 N		None	
	10	all geologists	10 00	
Morrison	17	White to buff to red shale	600-800	Minor

Copper mineralization in the Centennial deposit occurs predominately in the Dakota Sandstone (units 11 and 13) and in the Burro Canyon sandstone (unit 15) with lesser amounts in units 5, 6 and 12 of the Dakota sandstone.

4.2.2 Local Structure

The Lisbon Valley deposits are located in the Lisbon Valley anticline east of the Lisbon Valley Fault. The Lisbon Valley Fault is a northwest-trending fault parallel to the axis of the anticline and forms the footwall to the mineralization of the Centennial deposit. The fault dips about 55° to the northeast and has normal displacement of more than 2,000 feet. In addition to the main fault there are a series of parallel en echelon faults that show

lesser displacement. The Centennial deposit is located in the hanging wall of the Lisbon Valley Fault.

5 Mineralization

The Lisbon Valley deposits are sandstone-hosted copper deposits. Low temperature copper-bearing solutions ascended along the Lisbon Valley Fault and other fractures (Hahn and Thorson, 2003). The copper minerals were deposited in the favorable permeable beds of the Dakota and Burro Canyon sandstones.

The copper minerals are generally found as disseminations between the grains of the favorable sandstone units of the Dakota and Burro Canyon Formations. Lesser amounts can occur as coatings on fractures and around carbonaceous material in the sandstone units. Copper grades tend to be higher near the Lisbon Valley Fault and its splays, indicating that they were conduits for the copper-bearing solutions.

Copper mineralization occurs in oxide and sulfide mineralogic zones. The sulfide minerals are mainly chalcocite, with minor chalcopyrite and bornite. The sulfide zone lies predominately below the water table, approximately 150 to 250 feet below the surface, but sulfide material also extends into the oxide zone. The oxide minerals are malachite, azurite, tenorite and cuprite.

6 Drilling

The Lisbon Valley project has been drilled by several companies since 1960. Drilling methods include conventional rotary, airtrack, reverse circulation ("RC") and diamond core. CCC furnished SRK with four ASCII drillhole data files: collars: downhole surveys: assays: and lithologies. The files contain data for the three deposit areas at Lisbon Valley. The database for the Centennial deposit is defined by collar location within the block model limits. Figure 6-1 is a drillhole location map of the Centennial deposit. The drillhole database for the Centennial deposit is summarized in Table 6.1 based on information supplied by CCC, except where noted.

					Drill		Assay
Hole Prefix	Year	No.	Footage	Company	Туре	Logs	Certificates
1,2,3,9-							
13,15,17,18	-	11	700	Unknown	Unknown	No	No
55,115	-		350	Unknown	Unknown	No	No
A,AA,B,C,		22		Cleveland			
D,E	-		4,225	Cliffs*	Rotary*	No	No
M,MM	-	128	16,865	Keystone*	Rotary*	No	No
RC	-		1,220	Unknown	Unknown	No	No
SIN	-		175	Sindor*	Rotary*	No	No
SS	-		260	Unknown	Unknown	No	No
SUL	-		270	Unknown	Unknown	No	No
Ζ	-		285	Unknown	Airtrack*	No	No
CD	1973	228	57,407	Centennial Dev.	Rotary	Chipboards	Yes
LV	1975	63	17,099	Noranda	Rotary	Yes	Yes
KLVR	1992		700	Kennecott	Rotary	Yes	Yes
93C	1993		570	Constellation	Core	Yes	Yes
93R	1993	29	9,685	Constellation	RC	Yes	Yes
94R	1994	14	4,795	Constellation	RC	Yes	Yes
95R	1995	13	4,370	Constellation	RC	Yes	Yes
00R	2000	63	22,185	Constellation	RC	Yes	Yes
4R	2004	13	6,605	Constellation	RC	Yes	Yes
5R	2005	1	550	Constellation	RC	Yes	Yes
Total		609	148,316				
Airtrack		4	285				
Rotary		443	96,471				
Average			218				
RC		133	48,190				
Average			362				
Core		3	570				
Unknown		26	2,800				
Minimum			20				
Maximum			700				
Average			244				

Table 6.1: Constellation Copper Corporation, Lisbon Valley Copper Mine,Centennial Drilling Programs

*from WDC Technical Study Update

6-2

All the holes are vertical except for three in the extreme southeast. None of the holes were surveyed for downhole deviation, but given the shortness of the holes, the deviation should be insignificant. The drilling done prior to Centennial Development's operation has little documentation. Drill logs are available for CCC's drilling and chip boards are still existent for some of the earlier drilling.

7 Mineral Resource Estimate

The mineral resource for the Centennial deposit was estimated using Maptek's Vulcan software. The model limits are those currently in use at the mine and are:

East:	37,900 minimum	44,700 maximum
North:	37,000 minimum	42,700 maximum
Elevation:	5,760 minimum	6,800 maximum

The blocks are 20 x 20 feet in plan and 20 feet high. Figure 7-1 shows the model limit with the Centennial drillholes.

7.1 Topographic Data

The topographic data used in this report were furnished by CCC as a Vulcan surface and as a digital file. In addition, SRK received a Vulcan solid of the designed pit and an updated end of 2005 topographic surface.

7.2 Drillhole Database

The drillhole database was furnished to SRK in four ASCII files that include collars, downhole surveys, assays and rock and structure intercepts. The database includes all the holes at the Lisbon Valley Mine, but only that subset located within the block model limits were used in statistics and modeling for Centennial. The holes are all vertical, except for three in the southeast. The holes were not surveyed for downhole deviation, but given the average depth of 245 feet, there should be very little deviation. The assay file contains copper grades labeled TCu, total copper. The assay intervals are almost uniformly 5 feet. Although the block model used at the mine contains values for oxide/sulfide, the database does not contain a specific variable for that property. There are two codes in the database, Tmin and Kmin, that appear to be related to oxidation state, but there is no documentation on the values for the codes. SRK was given two files that contain information on the oxidation state of the drillhole samples. One file contains oxidation state based on geologic logging of chips and the other contains acid soluble copper assays. Appendix A is a listing of the drillholes.

The database contains all historic drilling by previous operators as well as drilling by CCC. CCC drilling makes up approximately 33% of the footage in the database. All the RC drilling was done by CCC, with the remainder of the drilling a mixture of drill techniques, including rotary and airtrack. Statistics for the drillholes are given in Table 7.2.1.

Drillhole Statistics	
Number of Holes	609
Minimum Depth	20
Maximum Depth	700
Average Depth	243
Median Depth	245
Total Footage	148,316
Footage Sampled	138,531
Sampled Intervals	27,595

 Table 7.2.1: Centennial Drillhole Statistics

7.3 Drillhole Sample Statistics

The drillhole database consists of 27,595 assay intervals with a grade of 0.0% or more copper; the maximum sample is 11.4% copper. Sample statistics are shown in Table 7.3.1.

Cutoff (%) Copper	Number Above Cutoff	Grade (%) Copper	(%) Above Cutoff
0.00	27,595	0.178	100
0.05	8,868	0.534	32
0.10	7,331	0.632	27
0.20	5,643	0.777	20
0.30	4,432	0.923	16
0.40	3,556	1.065	13
0.50	2,999	1.180	11

7.4 Geological Model

As part of the scope of work, SRK was asked to produce a geologic model with corresponding block model codes. SRK was furnished with a set of east-west cross-sections that had been developed by CCC geologists. Copper composites were plotted on the cross-sections, as were digitized lithologic contacts and faults. There were no lithologic codes displayed for the drillholes. The east-west sections are not orthogonal to the main structural trends which are about north 50° west. SRK was also given a digital file containing the drillhole depths corresponding to the lithologic contacts and fault intercepts as measured on the cross-sections. Some of the units had been combined into a single unit in the digital data, as shown in Table 7.4.1.

File Code	Formation	Model Code
QAL	Quaternary	1
Km	Mancos	2
3 to 5	Dakota	3
6 to 8	Dakota	6
9 to 11	Dakota	9
12	Dakota	12
13	Dakota	13
14	Burro Canyon	14
15	Burro Canyon	15
Jmb	Morrison	17
Je	Entrada	30
Js	Summerville	32
Trw	Wingate	44
Trc1	Chinle	41
Trc2	Chinle	42
Trcs	Chinle	43
Pc	Cutler	35

Table 7.4.1: Lithologic Codes

A new set of sections was defined perpendicular to the main structural trend at Lisbon Valley (Figure 7-2). Faults and contacts were interpreted in conjunction with the east-west sections and then digitized on the new sections. The drillholes were also viewed perpendicular to the sections and in plan view and contacts were digitized for problem areas. Vulcan surfaces were produced for the faults and solids were produced for the lithologies. The surfaces and solids were then used to load rock codes into the block model. A typical section is shown in Figure 7-3.

7.5 Oxidation Model

Oxidation codes had been assigned to the drillholes in the past and used for assigning codes to the mineralized zones in the earlier block models. The codes were not available in digital format for the drillhole database, but it was possible to obtain the codes from the WDC model which is currently in use at the mine. These codes were directly imported into the SRK model, however, there were areas in the SRK grade shells that were not coded. CCC then looked at the Tmin and Kmin variables in the drillhole database and compared them to the mineralized zones and oxidation state on crosssections drawn by previous owners. It was not possible to establish a definitive meaning to the codes and it was decided to use the available acid soluble copper assays and the codes from the geologic logs to build an oxide/reduced model.

The database of acid soluble copper assays ("ASCu") consists of 1,034 samples in an Excel spreadsheet. The ratio of ASCu to TCu was calculated, graphed, and statistics run (Appendix B). A low ratio indicates a reduced state and a high ratio an oxide state. The intervals were then assigned an oxide code from the geologic picks. In comparing the geologic picks with the ratios, it appeared that at a ratio of ASCu to TCu of less than 0.25

that the geologic picks were fairly consistently reduced and that over 0.50 the picks were fairly consistently oxide. Between 0.25 and 0.50 there appeared to be a mixed zone. It was decided that rather than use a mixed zone in the model, that the oxide/reduced boundary would be set at a ratio of 0.50. The TCu grades also show a difference in the oxide/reduced sets. Table 7.5.1 shows statistics for the database containing ASCu assays.

Oxide/Reduced	Copper (%)	Minimum	Maximum	Number of Samples
Oxide	0.431	0.003	2.983	305
Reduced	0.558	0.004	5.143	829

Table 7.5.1: Statistics for the ASCu database

The spreadsheet consisting of the ASCu/TCu ratios was merged with the spreadsheet containing the geologic picks, with the intervals containing ASCu assays taking precedence over the geologic picks. The resulting database was composited and codes were assigned to the block model using a nearest neighbor estimation run. Approximately 10% of the blocks within the SRK grade shells were not assigned an oxide code. The unassigned blocks are predominately in the southeast where the reduced rock is at a higher elevation than in the northwest. Therefore, unassigned blocks were given an oxide code if above 6,340 elevation and a reduced code if below. Figure 7-4 is a cross-section illustrating the oxide/reduced blocks resulting from the nearest neighbor assignment before assignment based on elevation.

7.6 Structural Model

The deposit was divided into four structural zones defined by through-going northwest trending faults. Figure 7-5 illustrates these zones. Zone 1 is bounded by the Lisbon Valley Fault to the West and a fault designated F1 on the east. Zone 4 is in the footwall of the Lisbon Valley Fault. Zone 2 is to the east of Zone 1 and is bounded on the east by fault F2. Zone 3 is to the east of Zone 2. The beds in Zone 1 dip 30 to 40° to the southwest, whereas the beds in Zones 2 and 3 dip more shallowly to the southwest at 10 to 20°. Although there is offset on fault F2, for the purposes of variography and modeling, Zones 2 and 3 were considered as a single unit. Zone 4 contains only minor mineralization along the Lisbon Valley Fault. When viewed in long-section, the stratigraphy and mineralization show a doming feature, plunging to the northwest and southeast. Zones 1 and 2 were subdivided into two subdomains reflecting this structure. Figure 7-6 is a plan view showing the structural subdomains used in grade estimation.

7.7 Unassayed Intervals

The database contains 144 questionable holes which contain more than three consecutive assays of zero grade. In most cases there are long intervals of 5 foot assays with a grade of zero followed by assays of over 1%. The assay certificates are unavailable for these holes, so it is unknown if the zero grade is below detection limit, missing or not sampled.

TWC (2000) conducted a study to see the impact of eliminating questionable holes by making two grade estimates, one with all the holes and one leaving the questionable holes out. TWC concluded that there was about 1% difference in the two models and elected to use all the data. The holes are from the early drill campaigns and are mainly quite short and in the area of the first phase of mining. These holes are listed in Appendix C along with a typical example. All holes in the database were used for grade estimation in the SRK model.

7.8 Compositing

The mine plan for the Centennial deposit is on 20 foot benches. The assay database was therefore composited with 20 foot lengths. Two files were created, one with fixed 20 foot lengths downhole and the other with 20 foot lengths based on the bench elevations. The statistics of both composite files are quite similar; at a 0.100% cutoff the average grade of the fixed length composites is 0.530 and the average grade of the bench composites is 0.522. The composites were compared to the mineralized intervals as defined by the assays and the fixed length composites appear to match the mineralized intervals more closely. The fixed length composites were used to define the grade shells in the block model and for grade estimation. Table 7..8.1 summarizes statistics for the 20 foot downhole composites.

Cutoff (%) Copper	Number Above Cutoff	Grade (%) Copper	(%) Above Cutoff
0.000	7,137	0.177	100
0.050	2,733	0.448	38
0.100	2,246	0.530	31
0.200	1,723	0.646	24
0.300	1,346	0.758	19
0.400	1,023	0.887	14
0.500	792	1.014	11

 Table 7.8.1: Statistics for the 20 foot Fixed Length Composites

7.9 Specific Gravity

A tonnage factor of 14.0 cubic feet per ton for all rock types is used at the mine and that number was used in tonnage calculations.

7.10 Resource Estimation Strategy

The mineralization of the Centennial deposit lies within distinct zones that are primarily stratabound, but which may also cut across lithologic boundaries. Mineralization also tends to be localized inside the lithologic units. Copper grades are higher near the Lisbon Valley Fault and its splays. For those reasons it was decided that lithology would not serve as an adequate control in grade modeling.

In the past, grade shells at a copper cutoff grade of 0.100% were used to define the mineralization. Grade shells were drawn on cross-sections and then digitized. The

resulting shapes were used as hard boundaries to limit the composites used in the grade estimation. For this study a grade indicator at 0.100% copper was used to define the grade shells. Copper estimation for blocks within the resulting shapes would be estimated with composites in the shape and blocks outside the shapes would be estimated with composites outside the shape.

Additionally, because the oxide/reduced samples appear to be a different population, based on grade, (Appendix 5 and Table 7.5.1), copper estimation in oxide blocks would be done with oxide composites and reduced blocks with reduced composites.

7.11 Variography

Indicator variograms at 0.100% copper were calculated in 18 horizontal and 9 vertical directions. Variograms were calculated separately for structural Zones 1 and 2 to refine the search. The oxide and sulfide composites were not separated in order to keep the number of data pairs high enough for a good interpretation. The variograms showed anisotropy with the major axis aligned with the strike of the beds and the semi-major axis defined in the down-dip direction. The major axis also showed a domal feature, plunging to the northwest and to the southeast. Variography was also calculated for copper grades. Appendix D contains the variography.

7.12 Copper Grade Shell

The indicator for the 0.100% copper cutoff was kriged using a minimum of three and a maximum of eight composites per block, and a maximum of three per drillhole. The search ellipsoid parameters are given in Table 7.12.1.

Zone		Range (feet)			Direction	
	Major	Semi- Major	Minor	Major	Dip	Plunge
Zone 1 South	270	225	50	130	-30	-10
Zone 1 North	270	225	50	310	-30	-10
Zone 2 South	270	225	50	130	-10	-10
Zone 2 North	270	225	50	320	-10	-10
Zone 4 – LVF Footwall	100	75	25	130	-10	-20

Table 7.12.1:	Search Ellipsoid	Parameters for	Indicator Kriging
1 ubic / 112111	Scuren Empsoia	I al ameter 5 101	indicator isriging

The search distance was shorter for Zone 4 in the footwall of the Lisbon Valley Fault because mineralization is limited to the fault contact zone. All composites could be used for the indicator estimation. Once the indicator had been kriged, the blocks with indicator values of 0.4, 0.45, 0.5, 0.55 and 0.6 were visually compared to the drillhole

assay cross-sections to determine which cutoff most closely matched the assay intervals at the cutoff grade. The 0.45 cutoff appears to have the best fit with the cross-sections and was used to define the grade shell. That is, all blocks with an indicator of 0.45 or greater are in the grade shell. Those blocks with an indicator of less than 0.45 are outside the grade shell.

7.13 Grade Estimation

The blocks were subdivided into domains dependent on structural zone and oxidation properties, as shown in Table 7.13.1 and Figure 7-6. The four structural zones exhibit different variography and should be estimated separately. The oxide and reduced composites have distributions that indicate two different populations (Appendix B and Table 7.5.1). Zone 4 was combined with Zone 1 for copper grade estimation.

		Mineralized
Zone	Oxide/Sulfide	Area Block Code
Zone 1 South	Oxide	10
Zone 1 South	Sulfide	11
Zone 2 South	Oxide	20
Zone 2 South	Sulfide	21
Zone 1 North	Oxide	30
Zone 1 North	Sulfide	31
Zone 2 North	Oxide	40
Zone 2 North	Sulfide	41

Table 7.13.1: Block Domains per Structural Zone and Oxidation Properties

The composites were flagged with these domain codes for use in block grade estimation. Each of the domains was interpolated separately because of the different variography; however, all the oxide composites could be used in the oxide blocks and all the sulfide composites could be used in the sulfide blocks.

Inverse Distance Estimation Inside the Grade Shell

Table 7.13.2 lists the parameters for the inverse distance interpolations. The estimation uses a minimum of one composite and a maximum of three composites, with a limit of one per drillhole per block. A second estimation run was made in order to fill in all the blocks in the grade shell. The same parameters were used, except the ranges were 270 feet (major axis), 225 feet (semi-major range), and 50 feet (minor axis) to correspond to the ranges used in the grade shell estimation.

Structural Zone	Mineralized Area	Composites Used in Estimation	Range (feet)		I	Direction		
			Major	Semi- Major	Minor	Major	Dip	Plunge
Zone 1 South	10	10,20,30,40	200	150	25	130	-30	-10
Zone 1 South	11	11,21,31,41	200	150	25	130	-30	-10
Zone 2 South	20	10,20,30,40	200	150	25	130	-10	-10
Zone 2 South	21	11,21,31,41	200	150	25	130	-10	-10
Zone 1 North	30	10,20,30,40	200	150	25	320	-30	-10
Zone 1 North	31	11,21,31,41	200	150	25	320	-30	-10
Zone 2 North	40	10,20,30,40	200	150	25	320	-10	-10
Zone 2 North	41	11,21,31,41	200	150	25	320	-10	-10

 Table 7.13.2: Parameters for Copper Estimation with Inverse Distance Cubed

Kriging Estimation inside the Grade Shell

The kriging estimation inside the grade shell used a minimum of one composite and a maximum of eight composites, with a maximum of three composites per drill hole. Table 7.13.3 lists the parameters for the kriging estimation, which are only slightly different than those for inverse distance cubed.

Structural Zone	Mineralized Area	Composites Used in Estimation	Range (feet)		Ľ	Direction	l	
			Major	Semi- Major	Minor	Major	Dip	Plunge
Zone 1 South	10	10,20,30,40	200	150	25	120	-30	-10
Zone 1 South	11	11,21,31,41	200	150	25	120	-30	-10
Zone 2 South	20	10,20,30,40	200	150	25	140	-20	-10
Zone 2 South	21	11,21,31,41	200	150	25	140	-20	-10
Zone 1 North	30	10,20,30,40	200	150	25	340	-30	-10
Zone 1 North	31	11,21,31,41	200	150	25	340	-30	-10
Zone 2 North	40	10,20,30,40	200	150	25	310	-20	-10
Zone 2 North	41	11,21,31,41	200	150	25	310	-20	-10

Table 7.13.3: Parameters for Copper Estimation with Kriging

The block grades from the two estimations were visually compared to the assay and composite cross-sections. Kriging appeared to smooth grade more than the inverse distance approach and it was decided to use the inverse distance technique for the estimation.

Estimation Outside the Grade Shell

A second inverse distance cubed grade estimation was run for the blocks outside the grade shell, using a search of 150, 100, 25 feet and the directions appropriate to the zones shown in Table 7.13.2. Blocks outside the grade shell in Zone 4, the Lisbon Valley Fault footwall, were not estimated in this run. Figure 7-7 is a cross-section showing copper grades through a typical cross-section.

7.14 Model Verification

As a verification of the model, the block grades were visually compared to the composite grades. There was generally good correlation. A second check was to run a nearest neighbor grade estimation. The grade of the nearest neighbor model at a cutoff of 0.05% copper is 0.446 % copper and the grade of the IDW model is 0.440% copper.

7.15 Resource Classification

The blocks were classified as measured, indicated, or inferred based on the distance to the closest drillhole and the number of drillholes used in the block estimation, as follows:

Within the grade shell:

Measured:	2 drillholes minimum, closest composite within 100 feet.
Indicated:	1 drillhole minimum, closest composite within175 feet.
Inferred:	1 drillhole minimum, closest composite greater than 175 feet
Outside the grade she	ell:
Indicated:	1 drillhole minimum, closest composite within 100 feet.

Inferred: 1 drillhole minimum, closest composite greater than 100 feet.

7.16 Mineral Resource Statement

The total measured and indicated resource of the Centennial deposit at a 0.1% copper cutoff is 37,871,000 tons at a grade of 0.440% copper. There is an additional inferred resource of 3,932,000 tons at 0.309% copper. The total resources and the resources inside and outside the grade shell are summarized in Table 7.16.1.

Total Reso	arce											
	Measured	Measured Indicated Inferred Measured and Indicated										
Cutoff	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu
%		% Cu	(000)		% Cu			% Cu	(000)		% Cu	(000)
0.050	19,870,906	0.477	189,459	24,110,923	0.315	152,139	8,582,851	0.179	30,758	43,981,829	0.388	341,599
0.100	19,459,070	0.485	188,820	18,412,061	0.392	144,178	3,931,570	0.309	24,273	37,871,131	0.440	332,999
0.200	16,326,610	0.548	179,055	13,691,664	0.477	130,655	2,348,774	0.425	19,944	30,018,274	0.516	309,709
0.300	12,620,664	0.636	160,592	10,213,056	0.556	113,516	1,582,224	0.511	16,183	22,833,720	0.600	274,107
0.400	9,011,251	0.752	135,484	6,609,355	0.669	88,476	885,360	0.640	11,324	15,620,606	0.717	223,960
0.500	6,408,293	0.875	112,168	4,237,162	0.793	67,214	563,774	0.746	8,408	10,645,454	0.843	179,383
Inside Mine	eralized Area											
	Measured Indicated Inferred Measured and Indicated					dicated						
Cutoff	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu
%		% Cu	(000)		% Cu			% Cu	(000)		% Cu	(000)
0.050	19,870,906	0.477	189,459	17,010,336	0.402	136,858	2,138,002	0.378	16,162	36,881,242	0.442	326,317
0.100	19,459,070	0.485	188,820	16,692,749	0.408	136,373	2,103,158	0.383	16,112	36,151,819	0.450	325,193
0.200	16,326,610	0.548	179,055	13,078,766	0.481	125,835	1,622,208	0.455	14,772	29,405,376	0.518	304,890
0.300	12,620,664	0.636	160,592	9,872,050	0.557	110,014	1,241,789	0.519	12,882	22,492,714	0.602	270,606
0.400	9,011,251	0.752	135,484	6,400,296	0.671	85,872	687,725	0.655	9,005	15,411,547	0.718	221,356
0.500	6,408,293	0.875	112,168	4,134,917	0.793	65,560	456,960	0.756	6,907	10,543,210	0.843	177,728
Outside Mir	neralized Area											
	Measured			Indicated			Inferred			Measured and In	dicated	
Cutoff	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu
%		% Cu	(000)		% Cu			% Cu	(000)		% Cu	(000)
0.050	0	0.000	0	7,100,587	0.108	15,282	6,444,850	0.113	14,596	7,100,587	0.108	15,282
0.100	0	0.000	0	1,719,312	0.227	7,806	1,828,411	0.223	8,161	1,719,312	0.227	7,806
0.200	0	0.000	0	612,898	0.393	4,820	726,566	0.356	5,171	612,898	0.393	4,820
0.300	0	0.000	0	341,006	0.513	3,501	340,435	0.485	3,301	341,006	0.513	3,501
0.400	0	0.000	0	209,059	0.623	2,605	197,635	0.587	2,319	209,059	0.623	2,605
0.500	0	0.000	0	102.245	0.809	1.654	106.814	0.702	1.500	102.245	0.809	1.654

Table 7.16.1: Measured, Indicated and Inferred Resources for the Centennial Deposit

Within the original pit outline the measured and indicated resource at a 0.100% copper cutoff is 27,467,000 tons at 0.471% copper and within the pit updated with the end of 2005 topography, the measured and indicated resource is 26,687,000 tons at a grade of 0.474% copper. Table 7.16.2 summarizes the resources found within the current pit outlines.

	Original Pit De	sign Indiantad	End of 2005 Pit	diantad		
Cutoff	Measured and Indicated				Crade	I be Cu
%	10115	% Cu	(000)	10115	% Cu	(000)
0.050	30,773,882	0.428	263,574	29,809,323	0.432	257,510
0.100	27,467,243	0.471	258,979	26,686,928	0.474	253,165
0.200	22,877,242	0.535	244,913	22,283,498	0.538	239,665
0.300	17,580,929	0.622	218,568	17,164,061	0.624	214,203
0.400	12,368,564	0.737	182,380	12,097,373	0.740	179,017
0.500	8,706,214	0.859	149,524	8,529,555	0.862	147,021

 Table 7.16.2: Measured and Indicated Resources within the Current Pit Outline and at End of 2005

Table 7.16.3 contains the measured and indicated sulfide and oxide resources and Table 7.16.4 contains the measured and indicated sulfide and oxide resources contained within the end of year 2005 pit.

	Oxide		Reduced				
	Measured and	Indicated	Measured and Indicated				
Cutoff	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu	
%	(000)	% Cu	(000)	(000)	% Cu	(000)	
0.050	14,907,178	0.332	99,096	29,074,651	0.417	242,503	
0.100	12,069,456	0.394	95,170	25,801,675	0.461	237,828	
0.200	9,004,397	0.477	85,935	21,013,877	0.532	223,774	
0.300	6,288,341	0.576	72,500	16,545,379	0.609	201,608	
0.400	4,110,355	0.697	57,330	11,510,251	0.724	166,630	
0.500	2,749,757	0.821	45,147	7,895,698	0.850	134,236	

Table 7.16.3:	Measured and	Indicated Resources	Classified by	Oxidation State.
---------------	--------------	----------------------------	----------------------	-------------------------

	Oxide			Reduced		
	Measured and	Indicated		Measured and Indicated		
Cutoff	Tons	Grade	Lbs Cu	Tons	Grade	Lbs Cu
%	(000)	% Cu	(000)	(000)	% Cu	(000)
0.050	12,462,060	0.343	85,481	17,347,263	0.496	172,029
0.100	10,340,510	0.399	82,557	16,346,418	0.522	170,608
0.200	7,891,579	0.476	75,117	14,391,919	0.572	164,549
0.300	5,485,032	0.576	63,205	11,679,029	0.646	150,998
0.400	3,557,222	0.699	49,762	8,540,152	0.757	129,255
0.500	2,362,539	0.827	39,073	6,167,016	0.875	107,948

Table 7.16.4: Measured and Indicated Resources within the End of 2005 Pit OutlineClassified by Oxidation State.

Table 7.16.5 lists the measured and indicated resources by rock type and Table 7.16.6 lists the measured and indicated resource by rock type within the end of year 2005 pit, both at 0.100% copper cutoff.

Table 7.16.5:	Measured and Indicated	Resource by Rock	Type at 0.100% Co	opper
Cutoff				

Rock Type	Tons	Grade	Lbs Cu	Minimum	Maximum
	(000)	% Cu	(000)	Cu%	Cu%
1	64,546	0.467	603	0.133	1.751
2	6,854	0.449	62	0.181	0.824
3-5	435,826	0.608	5,296	0.100	2.110
6-8	1,317,187	0.641	16,879	0.100	3.158
9-12	2,545,838	0.639	32,549	0.100	3.800
12	924,773	0.706	13,053	0.100	3.954
13	3,246,701	0.439	28,522	0.100	3.978
14	4,277,717	0.294	25,125	0.100	2.192
15	23,007,365	0.417	191,694	0.100	3.466
17	1,068,715	0.385	8,229	0.100	1.330
Unassigned	975,609	0.563	10,988	0.100	3.804

Table 7.16.6: Measured and Indicated Resource by Rock Type at 0.100% CopperCutoff within the End of 2005 pit.

Rock Type	Tons	Grade	Lbs Cu	Minimum	Maximum
	(000)	% Cu	(000)	Cu%	Cu%
1	32,992	0.541	357	0.139	1.751
2	0	-	0	0.000	0.000
3-5	371,500	0.623	4,631	0.100	2.110
6-8	1,108,191	0.665	14,746	0.100	3.158
9-12	2,290,880	0.663	30,371	0.100	3.800
12	819,895	0.747	12,241	0.100	3.954
13	2,797,542	0.464	25,968	0.100	3.978
14	3,360,291	0.302	20,328	0.100	2.192
15	15,487,884	0.445	137,876	0.100	3.466
17	87,248	0.386	673	0.100	1.330
Unassigned	330,505	0.904	5,973	0.104	3.804

8 **Recommendations**

The copper grade from this study differs from that of the WDC block model in use at the mine. The WDC resource model grade at a 0.100% copper cutoff is 0.515, while the SRK model grade is 0.440%. Because the modeling parameters used by SRK are very similar to those used by WDC, the difference probably lies in the composite database used by WDC. PAH noted that the compositing method used by WDC eliminated dilution and added 10% more tons at zero grade to the mineable reserve to compensate. It is recommended that the two composite databases be compared to see where the differences lie.

A mine to model reconciliation as mining progresses would be helpful in refining the model.

The model has room for an increase in tonnage at the southeast end of the deposit where drilling is on a 200 foot spacing. Selected infill drilling between the sections could add to the total resource.

The oxide/reduced model could be further refined with additional information from the drillhole chips and core. Although the mineralized rock has a good definition currently, it may be important to characterize waste from an environmental standpoint.

9 References

- Western Services Engineering, Inc. (December 1994) SUMMO USA Corporation, Lisbon Valley Copper Project San Juan County, Utah, Ore Reserve Evaluation
- Kelsey Engineering, Inc. (July 17, 1995) SUMMO USA Corporation, Lisbon Valley Project, Geologic Resource and Mineable Reserve Estimate Update for the Centennial Deposit
- Kelsey Associates, LTD (May 6, 1996) Lisbon Valley 1996 Mineable Reserve Update
- The Winters Company (February 1997) Review of Lisbon Valley Copper Project San Juan County, Utah, SUMMO Minerals Corporation
- Winters, Dorsey & Company, LLC (November 2003) Lisbon Valley Copper Project San Juan County, Utah Technical Update Study to the October 2000 Feasibility Study, Prepared by the Winters Company
- Hahn, G.A., and Thorson, J.P. (2005) *Geology of the Lisbon Valley Sandstone-hosted* Disseminated Copper Deposits, San Juan County, Utah [Reprint], 42 pages

10 Glossary

Assay:	The chemical analysis of mineral samples to determine the metal content.
Composite:	Combining more than one sample result to give an average result over a larger distance.
Cutoff Grade (CoG):	The grade of mineralized rock, which determines as to whether or not it is economic to recover its metal content by further concentration.
Dip:	Angle of inclination of a geological feature/rock from the horizontal.
Fault:	The surface of a fracture along which movement has occurred.
Footwall:	The underlying side of an orebody or stope.
Gangue:	Non-valuable components of the ore.
Grade:	The measure of concentration of metal within mineralized rock.
Hangingwall:	The overlying side of an orebody or slope.
Kriging:	An interpolation method of assigning values from samples to blocks that minimizes the estimation error.
Lithological:	Geological description pertaining to different rock types.
Stratigraphy:	The study of stratified rocks in terms of time and space.
Variogram:	A statistical representation of the characteristics (usually grade).

Abbreviations

The Imperial system has been used throughout this report, unless otherwise stated. A ton is equal to 2,000 pounds.

Appendix A

Listing of Drillholes

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
1	41.449	39.995	6,484	35	0	-90
2	41,488	39,968	6,483	35	0	-90
3	41,544	39,931	6,484	20	0	-90
9	41,383	39,966	6,465	60	0	-90
10	41,444	39,925	6,465	50	0	-90
11	41,501	39,887	6,469	45	0	-90
12	41,468	39,850	6,461	85	0	-90
13	41,428	39,803	6,460	115	0	-90
15	41,392	39,760	6,465	145	0	-90
17	42,105	40,001	6,480	55	0	-90
18	42,041	39,872	6,480	55	0	-90
00R1	42,025	39,566	6,495	400	0	-90
00R10	43,034	39,537	6,481	415	0	-90
00R11	42,883	39,378	6,479	350	0	-90
00R12	42,747	39,227	6,487	300	0	-90
00R13	43,318	39,435	6,478	415	0	-90
00R14	43,135	39,261	6,480	350	0	-90
00R15	43,002	39,120	6,490	335	0	-90
00R16	43,081	39,387	6,477	350	0	-90
00R17	43,017	39,309	6,481	350	0	-90
00R18	42,950	39,233	6,485	350	0	-90
00R19	42,884	39,159	6,488	340	0	-90
00R2	42,220	39,504	6,486	445	0	-90
00R20	42,814	39,092	6,494	260	0	-90
00R21	43,209	39,334	6,476	350	0	-90
00R22	43,076	39,193	6,484	350	0	-90
00R23	42,928	39,048	6,494	250	0	-90
00R24	43,440	39,320	6,471	400	0	-90
00R25	43,374	39,252	6,473	370	0	-90
00R26	43,308	39,178	6,478	350	0	-90
00R27	43,240	39,105	6,483	285	0	-90
00R28	43,234	39,097	6,484	360	0	-90
00R29	43,172	39,029	6,489	350	0	-90
00R3	42,640	39,954	6,515	400	0	-90
00R30	43,106	38,949	6,495	250	0	-90
00R31	43,492	39,075	6,474	390	0	-90
00R32	43,428	39,007	6,478	360	0	-90
00R33	43,367	38,939	6,483	380	0	-90
00R34	43,307	38,870	6,489	250	0	-90
00R35	43,677	38,976	6,469	360	0	-90
00R36	43,630	38,920	6,472	380	0	-90
00R37	43,576	38,855	6,477	350	0	-90
00R38	43,514	38,791	6,482	320	0	-90
00R39	43,812	38,811	6,466	400	0	-90
00K4	42,861	39,892	6,511	400	0	-90
00K40	43,762	38,/58	6,470	380	0	-90
00K41	43,702	38,689	6,476	290	0	-90
00K42	43,912	38,632	6,473	400	0	-90
00K43	43,870	38,366	6,479	350	0	-90
00K44	44,079	38,815	6,459	370	0	-90

Drillhole Listing

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
00R45	43,980	38,972	6,460	360	222	-65
00R46	43,565	39,162	6,469	380	0	-90
00R47	42,947	39,462	6,477	380	0	-90
00R48	42,804	39,303	6,482	320	0	-90
00R49	42,627	39,617	6,484	350	0	-90
00R5	42,484	39,812	6,492	350	0	-90
00R50	42,460	39,462	6,480	320	0	-90
00R51	42,545	39,302	6,485	270	0	-90
00R52	42,613	39,366	6,481	300	0	-90
00R53	42,697	39,451	6,479	320	0	-90
00R54	42,776	39,536	6,479	330	0	-90
00R55	42,838	39,607	6,482	370	0	-90
00R56	44,059	38,494	6,472	380	0	-90
00R57	44,161	38,598	6,462	400	222	-70
00R58	44,162	38,600	6,462	390	0	-90
00R59	44,038	38,462	6,476	300	222	-70
00R6	42,374	39,660	6,483	350	0	-90
00R60	44,240	38,381	6,466	380	0	-90
00R61	44,365	38,517	6,455	370	0	-90
00R62	44,305	38,453	6,460	370	0	-90
00R63	40,136	41,562	6,398	440	0	-90
00R7	42,694	39,723	6,490	350	0	-90
00R8	42,564	39,545	6,480	350	0	-90
00R9	42,392	39,385	6,485	300	0	-90
115-5	41,014	40,032	6,434	175	0	-90
4R-35	40,388	41,408	6,402	400	0	-90
4R-36	40,394	41,600	6,398	420	0	-90
4R-37	39,989	42,066	6,380	535	0	-90
4R-38	40,194	41,877	6,389	480	0	-90
4R-39	39,995	41,867	6,386	530	0	-90
4R-40	40,003	41,668	6,392	520	0	-90
4R-41	39,583	42,343	6,374	620	0	-90
4R-42	39,766	41,947	6,383	540	0	-90
4R-43	40,382	41,788	6,395	430	0	-90
4R-44	39,587	42,143	6,378	540	0	-90
4R-45	39,174	42,471	6,375	650	0	-90
4R-46	40,211	41,651	6,397	440	0	-90
4R-47	39,591	42,005	6,382	500	0	-90
55-4	41,419	39,737	6,465	175	0	-90
5R-2	40,369	41,984	6,389	550	0	-90
9-23C	41,209	39,870	6,413	110	0	-90
93C1	41,417	40,403	6,473	310	0	-90
93C3	41,144	40,415	6,478	150	0	-90
93R1	40,780	40,413	6,417	300	0	-90
93R10	42,715	40,282	6,498	315	0	-90
93R11	42,118	40,538	6,490	335	0	-90
93R12	42,163	40,689	6,477	315	0	-90
93R13	42,251	40,644	6,478	305	0	-90
93R14	41,564	40,683	6,477	335	0	-90
93R15	41,370	40,673	6,472	315	0	-90
93R16	41,661	40,807	6,481	300	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
93R17	41,625	40,957	6,467	300	0	-90
93R18	41,245	40,775	6,473	380	0	-90
93R19	41,918	40,881	6,471	300	0	-90
93R2	41,310	40,584	6,462	350	0	-90
93R20	41,926	40,701	6,493	360	0	-90
93R21	41,781	40,668	6,497	345	0	-90
93R22	41,944	40,646	6,496	380	0	-90
93R23	41,942	40,418	6,503	380	0	-90
93R24	41,765	40,462	6,490	360	0	-90
93R25	41,634	40,656	6,487	370	0	-90
93R26	42,352	40,115	6,531	340	0	-90
93R27	42,340	40,589	6,479	320	0	-90
93R28	42,513	40,491	6,475	220	0	-90
93R29	42,668	40,416	6,478	340	0	-90
93R3	41,007	40,320	6,460	325	0	-90
93R4	40,964	40,490	6,465	350	0	-90
93R5	41,303	40,214	6,492	400	0	-90
93R6	41,320	40,030	6,435	345	0	-90
93R7	42,518	40,111	6,519	315	0	-90
93R8	42,385	40,274	6,523	350	0	-90
93R9	42,665	40,135	6,519	335	0	-90
94R1	42,469	40,622	6,466	300	0	-90
94R10	42,835	40,708	6,459	410	0	-90
94R11	40,578	41,359	6,410	380	0	-90
94R12	40,825	41,507	6,408	300	0	-90
94R13	40,648	41,481	6,402	400	0	-90
94R14	40,518	41,486	6,401	440	0	-90
94R2	42,779	40,465	6,465	320	0	-90
94R3	42,827	40,568	6,459	320	0	-90
94R4	42,918	40,469	6,461	300	0	-90
94R5	42,436	40,689	6,457	300	0	-90
94R6	42,619	40,701	6,457	200	0	-90
94R7	42,621	40,683	6,458	300	0	-90
94R8	42,540	40,892	6,455	365	0	-90
94R9	42,747	40,900	6,459	460	0	-90
95-3	41,165	39,898	6,440	150	0	-90
95R12	40,403	41,305	6,405	400	0	-90
95R-13	42,147	40,851	6,465	300	0	-90
95R-14	41,958	40,976	6,458	235	0	-90
95R-15	41,756	41,095	6,462	285	0	-90
95R-16	41,632	41,332	6,452	350	0	-90
95R17	41,471	41,316	6,454	375	0	-90
95R18	41,266	41,463	6,437	375	0	-90
95R-19	41,138	41,505	6,426	355	0	-90
95R20	40,926	41,658	6,409	355	0	-90
95R21	40,546	41,822	6,395	390	0	-90
95R22	40,428	41,713	6,410	415	0	-90
95R23	40,718	41,630	6,410	385	0	-90
А	41,179	39,882	6,440	180	0	-90
A1	41,615	40,348	6,458	180	0	-90
A2	41,676	40,312	6,460	160	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
A3	41,747	40,284	6,460	200	0	-90
A4	41,859	40,229	6,466	155	0	-90
AA2	40,184	41,154	6,403	280	0	-90
AA3	40,355	41,168	6,407	240	0	-90
AA6	41,311	40,505	6,456	150	0	-90
AA7	41,523	40,726	6,495	150	0	-90
AA8	41,582	40,767	6,490	200	0	-90
B1	41,885	40,271	6,461	170	0	-90
B2	41,785	40,328	6,460	180	0	-90
B3	41,711	40,364	6,468	165	0	-90
B4	41,653	40,404	6,472	155	0	-90
C1	41,655	40,272	6,461	200	0	-90
C2	41,712	40,232	6,461	200	0	-90
C3	41,800	40,187	6,471	195	0	-90
CD10	41,750	39,886	6,504	305	0	-90
CD100	40,380	40,574	6,415	200	0	-90
CD101	40,992	39,998	6,349	105	0	-90
CD102	40,384	40,458	6,402	123	0	-90
CD103	40,464	40,379	6,389	125	0	-90
CD104	40,231	40,478	6,446	145	0	-90
CD105	40,734	41,240	6,439	420	0	-90
CD106	40,410	40,293	6,463	140	0	-90
CD107	41,108	40,946	6,458	360	0	-90
CD108A	41,187	39,939	6,351	147	0	-90
CD109	40,916	41,095	6,453	420	0	-90
CD11	41,400	40,203	6,508	335	0	-90
CD110A	40,777	40,113	6,343	85	0	-90
CD111	40,589	40,074	6,471	360	0	-90
CD112	40,617	40,292	6,370	146	0	-90
CD113	40,919	41,281	6,441	360	0	-90
CD114	41,206	40,871	6,463	320	0	-90
CD115	40,758	41,094	6,422	320	0	-90
CD116	40,831	40,972	6,445	400	0	-90
CD117	41,111	40,748	6,464	300	0	-90
CD118	41,021	40,818	6,466	360	0	-90
CD118A	40,896	40,046	6,343	90	0	-90
CD119A	41,211	40,049	6,395	245	0	-90
CD12	42,243	40,004	6,498	240	0	-90
CD120	41,101	40,102	6,391	185	0	-90
CD121	40,645	41,135	6,403	300	0	-90
CD122	41,750	39,725	6,464	165	0	-90
CD123	41,837	40,011	6,484	320	0	-90
CD124	40,924	40,892	6,460	385	0	-90
CD125	41,921	39,926	6,484	215	0	-90
CD126	41,746	40,275	6,474	185	0	-90
CD127A	40,798	40,225	6,351	155	0	-90
CD128	42,021	40,039	6,482	193	0	-90
CD129	41,843	40,194	6,477	187	0	-90
CD13	41,751	40,388	6,476	180	0	-90
CD130	41,931	40,118	6,481	167	0	-90
CD131	41,625	39,585	6,486	250	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
CD132	41,359	39,685	6,487	180	0	-90
CD133	41,158	39,676	6,485	300	0	-90
CD134	41,540	39,483	6,496	400	0	-90
CD135	41,202	40,963	6,456	378	0	-90
CD136A	41,006	40,095	6,354	165	0	-90
CD137	40,107	40,963	6,418	280	0	-90
CD138	41,821	39,817	6,501	355	0	-90
CD139A	41,569	39,694	6,406	215	0	-90
CD14	41,598	40,377	6,467	180	0	-90
CD140	41,641	39,503	6,493	400	0	-90
CD141	41,742	39,615	6,462	360	0	-90
CD142	41,843	39,731	6,488	325	0	-90
CD143	40,104	41,049	6,418	235	0	-90
CD144	40,104	41,141	6,414	250	0	-90
CD145	40,019	41,037	6,414	145	0	-90
CD146	40,362	41,075	6,416	285	0	-90
CD147A	41,466	39,763	6,383	210	0	-90
CD148	40,205	41,072	6,418	325	0	-90
CD149A	41,320	39,859	6,367	200	0	-90
CD15	41,399	40,648	6,476	280	0	-90
CD150	41,452	39,564	6,490	330	0	-90
CD151	40,992	39,681	6,493	240	0	-90
CD153	42,008	39,844	6,484	295	0	-90
CD154A	41,088	39,928	6,360	135	0	-90
CD155A	40,690	40,188	6,356	130	0	-90
CD156	41,659	39,894	6,497	360	0	-90
CD157A	40,543	40,307	6,377	118	0	-90
CD158	41,109	41,037	6,453	320	0	-90
CD159	40,823	41,359	6,435	320	0	-90
CD16	41,271	39,721	6,475	250	0	-90
CD160	41,015	41,019	6,454	354	0	-90
CD161	42,030	40,226	6,496	200	0	-90
CD162	42,118	40,150	6,497	150	0	-90
CD163A	40,692	40,287	6,365	165	0	-90
CD164	42,212	40,069	6,501	200	0	-90
CD165	42,110	39,961	6,485	145	0	-90
CD166	42,217	40,262	6,509	200	0	-90
CD167	41,738	39,800	6,481	360	0	-90
CD168	42,132	40,340	6,510	140	0	-90
CD17	41,094	39,992	6,349	300	0	-90
CD170	42,014	40,142	6,487	120	0	-90
CD171	42,103	40,063	6,490	140	0	-90
CD172	42,196	39,982	6,493	140	0	-90
CD173	42,103	39,864	6,483	255	0	-90
CD174	42,015	39,943	6,482	200	0	-90
CD175	41,925	40,023	6,481	220	0	-90
CD176	41,835	40,101	6,482	215	0	-90
CD177	41,937	40,302	6,490	200	0	-90
CD178	41,844	40,386	6,484	220	0	-90
CD179	41,845	40,287	6,471	105	0	-90
CD18	40,445	40,570	6,425	400	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
CD180	41,757	40,101	6,483	220	0	-90
CD181	41,835	39,902	6,489	250	0	-90
CD182	41,924	39,824	6,488	300	0	-90
CD183	41,741	39,988	6,493	310	0	-90
CD184	42,111	39,774	6,483	257	0	-90
CD185	42,012	39,756	6,486	300	0	-90
CD186	41,745	40,172	6,485	180	0	-90
CD187	41,645	40,161	6,487	195	0	-90
CD188	41,573	40,277	6,481	220	0	-90
CD189	42,105	39,679	6,486	320	0	-90
CD190	42,201	39,700	6,483	300	0	-90
CD191	41,573	40,549	6,481	270	0	-90
CD192	41,482	40,623	6,478	220	0	-90
CD193	41,469	40,518	6,466	165	0	-90
CD194	41,549	40,429	6,450	125	0	-90
CD195	41,239	40,553	6,447	180	0	-90
CD196	40,273	41,065	6,418	310	0	-90
CD197	40,475	41,198	6,416	160	0	-90
CD198	40,638	41,223	6,419	120	0	-90
CD199	40,664	41,070	6,406	60	0	-90
CD1A	40,610	40,374	6,392	260	0	-90
CD2	40,201	40,677	6,416	150	0	-90
CD20	42,145	39,814	6,483	210	0	-90
CD200	40,732	41,141	6,417	100	0	-90
CD201	40,757	40,989	6,434	140	0	-90
CD202	40,826	41,067	6,440	120	0	-90
CD203	40,919	40,995	6,450	140	0	-90
CD204	40,921	41,187	6,445	60	0	-90
CD205	40,827	41,257	6,441	50	0	-90
CD206	40,735	41,339	6,432	80	0	-90
CD207	40,839	40,889	6,454	260	0	-90
CD208	40,947	40,824	6,462	200	0	-90
CD209	41,019	40,916	6,461	385	0	-90
CD21	41,699	40,037	6,490	300	0	-90
CD210	40,591	41,000	6,441	80	0	-90
CD211	41,114	40,843	6,470	150	0	-90
CD212	41,014	40,753	6,452	180	0	-90
CD213	41,197	40,676	6,464	180	0	-90
CD214	41,297	40,693	6,473	150	0	-90
CD215	40,927	40,640	6,453	262	0	-90
CD216	41,439	40,031	6,467	305	0	-90
CD217	41,662	39,808	6,458	300	0	-90
CD218	41,049	40,595	6,458	70	0	-90
CD219	41,653	40,445	6,476	140	0	-90
CD22	41,944	40,230	6,489	260	0	-90
CD220	41,675	40,279	6,473	140	0	-90
CD221	41,647	40,357	6,469	130	0	-90
CD222	41,352	40,094	6,464	300	0	-90
CD223	41,635	39,964	6,511	300	0	-90
CD224	41,564	39,865	6,450	260	0	-90
CD225	41,573	40,090	6,494	250	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
CD226	41,596	40,269	6,486	292	0	-90
CD227	41,549	40,146	6,486	225	0	-90
CD228	41,641	40,061	6,494	260	0	-90
CD229	41,164	40,363	6,483	300	0	-90
CD23	41,560	39,989	6,501	380	0	-90
CD230	41,264	40,381	6,481	240	0	-90
CD24	41,418	39,900	6,404	320	0	-90
CD25	41,283	39,956	6,365	160	0	-90
CD26	41,454	40,218	6,490	290	0	-90
CD27	41,216	40,131	6,435	320	0	-90
CD28	41,344	40,372	6,482	240	0	-90
CD29	41,187	40,274	6,493	360	0	-90
CD3	40,075	40,883	6,414	150	0	-90
CD30	41,116	40,198	6,440	260	0	-90
CD31	40,991	40,160	6,380	180	0	-90
CD32	41,014	40,260	6,443	265	0	-90
CD33	40,904	40,235	6,389	210	0	-90
CD34	40,901	40,329	6,441	220	0	-90
CD35	40,793	40,338	6,404	200	0	-90
CD36	41,223	40,782	6,475	250	0	-90
CD37	40,943	40,560	6,467	240	0	-90
CD38	40,831	40,406	6,432	280	0	-90
CD39	40,751	40,524	6,445	240	0	-90
CD4	40,373	40,978	6,421	200	0	-90
CD40	40,856	40,757	6,448	300	0	-90
CD41	40,646	40,577	6,454	320	0	-90
CD42	40,576	40,668	6,444	300	0	-90
CD43	40,544	40,888	6,430	320	0	-90
CD44	40,189	40,783	6,417	145	0	-90
CD45	40,398	41,201	6,414	310	0	-90
CD46	40,314	41,193	6,413	185	0	-90
CD47	40,221	41,181	6,415	280	0	-90
CD48	40,311	41,006	6,419	305	0	-90
CD49	40,207	40,986	6,420	260	0	-90
CD5	40,563	41,217	6,415	200	0	-90
CD50B	40,189	40,865	6,421	275	0	-90
CD51	40,687	40,448	6,416	280	0	-90
CD52	40,559	40,489	6,421	230	0	-90
CD53	40,603	40,453	6,417	240	0	-90
CD54	40,322	40,669	6,427	220	0	-90
CD55	40,710	41,009	6,422	400	0	-90
CD56	40,560	41,119	6,419	380	0	-90
CD57	40,460	41,083	6,419	345	0	-90
CD58	40,532	40,986	6,433	440	0	-90
CD59	40,796	40,404	6,421	280	0	-90
CD6	40,263	41,107	6,416	380	0	-90
CD60	40,553	40,578	6,424	260	0	-90
CD61	40,485	40,686	6,439	295	0	-90
CD62	40,762	40,807	6,444	310	0	-90
CD63	40,772	40,719	6,450	350	0	-90
CD64	40,686	40,918	6,448	400	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
CD65	40,671	40,800	6,449	305	0	-90
CD66	40,587	40,801	6,452	360	0	-90
CD67	40,484	40,764	6,453	340	0	-90
CD68	40,414	40,688	6,442	265	0	-90
CD69	40,327	40,774	6,442	240	0	-90
CD7	40,263	41,306	6,410	195	0	-90
CD70	40,449	40,819	6,455	380	0	-90
CD71	40,228	40,880	6,436	295	0	-90
CD72	40,233	40,767	6,422	460	0	-90
CD73	40,351	40,867	6,446	325	0	-90
CD74	40,433	40,891	6,443	400	0	-90
CD75	40,495	40,882	6,433	360	0	-90
CD76	40,456	40,959	6,423	360	0	-90
CD77	41,255	40,283	6,493	380	0	-90
CD78	41,353	40,295	6,493	360	0	-90
CD79	41,141	40,423	6,481	340	0	-90
CD8	41,050	40,467	6,477	320	0	-90
CD80	41,424	40,112	6,501	360	0	-90
CD81	40,956	40,482	6,467	180	0	-90
CD82	40,839	40,527	6,465	335	0	-90
CD83	40,889	40,146	6,348	160	0	-90
CD84	40,682	40,387	6,406	235	0	-90
CD85	40,848	40,631	6,460	360	0	-90
CD86	40,765	40,622	6,461	350	0	-90
CD87	41,172	40,563	6,447	260	0	-90
CD88	40,308	40,563	6,411	140	0	-90
CD89	40,545	40,391	6,396	173	0	-90
CD9	40,660	40,744	6,458	360	0	-90
CD90	40,462	40,470	6,401	165	0	-90
CD91	41,466	40,404	6,472	240	0	-90
CD92	41,081	40,543	6,464	305	0	-90
CD93	41,606	40,206	6,490	280	0	-90
CD94	41,450	40,308	6,489	300	0	-90
CD95	41,248	40,448	6,473	300	0	-90
CD96	40,974	40,407	6,477	360	0	-90
CD97	41,335	40,479	6,468	260	0	-90
CD98	41,109	40,297	6,492	380	0	-90
CD99	40,827	41,165	6,446	420	0	-90
D1	41,785	40,089	6,479	235	0	-90
D2	41,669	40,130	6,480	245	0	-90
D3	41,554	40,187	6,476	235	0	-90
E1	40,727	40,268	6,435	185	0	-90
E2	40,746	40,288	6,435	165	0	-90
KLVR2	40,848	40,553	6,463	700	0	-90
LV-1	39,991	41,088	6,411	215	0	-90
LV-10	40,709	41,616	6,412	300	0	-90
LV-15	40,986	41,470	6,421	350	0	-90
LV-16	41,200	41,280	6,448	320	0	-90
LV-17	41,570	41,157	6,463	260	0	-90
LV-18	41,753	40,948	6,473	286	0	-90
LV-19	40,939	41,792	6,409	290	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
LV-2	39,808	41,323	6,402	220	0	-90
LV-20	41,176	41,980	6,421	325	0	-90
LV-21	41,451	41,536	6,440	360	0	-90
LV-22	41,722	41,335	6,451	110	0	-90
LV-23	41,950	41,155	6,453	295	0	-90
LV-24	42,000	40,760	6,482	240	0	-90
LV-25	42,163	40,499	6,492	215	0	-90
LV-26	42,662	40,567	6,468	280	0	-90
LV-27	42,248	40,990	6,450	195	0	-90
LV-28	42,431	40,783	6,465	220	0	-90
LV-3	39,623	41,561	6,393	250	0	-90
LV-33	43,054	40,526	6,468	230	0	-90
LV-34	42,809	40,736	6,463	100	0	-90
LV-35	42,997	40,958	6,472	140	0	-90
LV-36	42,894	40,372	6,471	230	0	-90
LV-37	43,115	40,183	6,478	225	0	-90
LV-38	43,360	39,986	6,482	275	0	-90
LV-39	43,565	39,792	6,485	270	0	-90
LV-40	43,409	39,554	6,495	320	0	-90
LV-41	43,176	39,726	6,514	360	0	-90
LV-42	42,908	39,936	6,512	350	0	-90
LV-43	43,273	40,362	6,479	185	0	-90
LV-44	42,328	41,132	6,454	220	0	-90
LV-45	42,104	41,349	6,446	305	0	-90
LV-46	41,616	41,722	6,437	325	0	-90
LV-47	42,705	40,174	6,508	240	0	-90
LV-48	42,511	40,335	6,517	325	0	-90
LV-49	42,014	40,364	6,500	255	0	-90
LV-5	39,687	41,987	6,385	385	0	-90
LV-50	41,766	40,659	6,494	220	0	-90
LV-51	41,519	40,787	6,475	305	0	-90
LV-52	41,287	40,973	6,455	315	0	-90
LV-53	42,245	40,168	6,507	325	0	-90
LV-54	42,560	40,927	6,458	220	0	-90
LV-56	42,475	39,988	6,520	305	0	-90
LV-57	42,447	40,189	6,530	365	0	-90
LV-58	42,248	40,343	6,513	355	0	-90
LV-59	42,013	40,579	6,496	105	0	-90
LV-6	39,866	41,746	6,392	240	0	-90
LV-60	41,797	40,782	6,492	310	0	-90
LV-61	41,478	40,955	6,463	270	0	-90
LV-62	41,240	41,138	6,448	265	0	-90
LV-63	41,022	41,329	6,437	280	0	-90
LV-64	41,047	41,166	6,447	300	0	-90
LV-65	41,359	40,810	6,472	60	0	-90
LV-66	41,701	40,519	6,500	385	0	-90
LV-67	42,064	40,218	6,495	286	0	-90
LV-68	42,205	40,040	6,496	285	0	-90
LV-69	42,364	39,886	6,497	295	0	-90
LV-7	40,027	41,499	6,402	265	0	-90
LV-70	42,021	40,370	6,500	345	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
LV-71	41,761	40,682	6,493	330	0	-90
LV-72	41,349	40,845	6,470	325	0	-90
LV-73	42,035	40,706	6,484	302	0	-90
LV-8	40,458	41,446	6,406	270	0	-90
LV-9	40,279	41,688	6,398	300	0	-90
M100	42,007	39,898	6,482	300	0	-90
M101	41,836	39,921	6,494	260	0	-90
M102	41,911	39,881	6,491	260	0	-90
M103	41,991	39,992	6,481	260	0	-90
M104	42,009	39,794	6,481	240	0	-90
M105	42,054	40,009	6,479	200	0	-90
M106	42,081	39,829	6,480	190	0	-90
M107	42,162	39,871	6,480	200	0	-90
M108	42,257	39,919	6,485	200	0	-90
M109	42,215	39,833	6,479	220	0	-90
M110	42,255	40,000	6,490	60	0	-90
M111	42,139	39,782	6,480	220	0	-90
M112	42,066	39,725	6,491	200	0	-90
M113	42,414	39,955	6,496	220	0	-90
M114	42,328	39,961	6,493	170	0	-90
M115	42,423	39,930	6,493	140	0	-90
M116	42,419	40,001	6,502	150	0	-90
M117	42,507	39,969	6,502	180	0	-90
M118	41,842	40,031	6,487	250	0	-90
M119	41,930	40,078	6,481	235	0	-90
M120	42,024	40,107	6,481	185	0	-90
M121	42,158	40,054	6,483	70	0	-90
M122	42,146	40,144	6,485	185	0	-90
M123	42,236	40,077	6,485	195	0	-90
M124	42,275	39,888	6,482	220	0	-90
M125	41,777	40,105	6,477	190	0	-90
M126	41,855	40,157	6,476	145	0	-90
M128	42,366	39,801	6,483	260	0	-90
M129	42,301	39,725	6,479	200	0	-90
M14	41,655	39,695	6,477	90	0	-90
MM100	40,114	40,986	6,410	140	0	-90
MM101	40,338	40,889	6,423	120	0	-90
MM102	40,392	41,076	6,410	140	0	-90
MM103	40,401	41,114	6,408	150	0	-90
MM104	40,410	41,216	6,404	120	0	-90
MM105	40,420	41,271	6,400	160	0	-90
MM106	40,250	40,914	6,412	120	0	-90
MM107	40,380	40,642	6,418	140	0	-90
MM108	40,342	40,674	6,429	140	0	-90
MM109	40,308	40,705	6,423	140	0	-90
MM110	40,250	40,750	6,420	150	0	-90
MM111	40,454	40,574	6,415	115	0	-90
MM112	40,539	40,508	6,411	120	0	-90
MM113	40,556	40,540	6,420	80	0	-90
MM114	40,591	40,507	6,414	90	0	-90
MM115	40,629	40,477	6,450	100	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
MM116	40,530	40,619	6,440	90	0	-90
MM13	41,846	40,053	6,484	235	0	-90
MM14	41,901	40,099	6,479	240	0	-90
MM16	41,968	40,120	6,476	240	0	-90
MM17	41,867	40,172	6,476	235	0	-90
MM18	41,912	40,200	6,474	235	0	-90
MM19	41,704	40,333	6,466	50	0	-90
MM20	41,718	40,355	6,468	50	0	-90
MM21	41,730	40,377	6,470	35	0	-90
MM22	41,739	40,400	6,471	20	0	-90
MM23	40,931	40,002	6,343	110	0	-90
MM24	40,945	40,032	6,343	65	0	-90
MM25	41,150	39,919	6,360	75	0	-90
MM26	41,112	39,869	6,461	85	0	-90
MM27	40,606	40,337	6,435	20	0	-90
MM28	40,719	40,187	6,338	100	0	-90
MM29	41,346	39,818	6,460	100	0	-90
MM30	41,296	39,851	6,461	100	0	-90
MM31	41,246	39,882	6,367	100	0	-90
MM32	41,194	39,913	6,366	100	0	-90
MM33	41,035	39,958	6,355	95	0	-90
MM34	41,021	39,993	6,351	80	0	-90
MM35	40,915	40,063	6,343	90	0	-90
MM36	40,866	40,093	6,341	100	0	-90
MM37	40,835	40,139	6,336	120	0	-90
MM38	40,771	40,153	6,333	100	0	-90
MM39	40,634	40,281	6,350	120	0	-90
MM40	40,411	40,475	6,385	110	0	-90
MM41	40,372	40,524	6,395	140	0	-90
MM42	40,458	40,442	6,380	140	0	-90
MM43	40,505	40,406	6,370	140	0	-90
MM44	40,552	40,365	6,364	150	0	-90
MM45	40,577	40,463	6,411	125	0	-90
MM46	40,523	40,492	6,413	130	0	-90
MM47	40,488	40,513	6,413	130	0	-90
MM48	40,430	40,550	6,415	120	0	-90
MM49	40,388	40,578	6,425	120	0	-90
MM5	42,038	40,342	6,455	200	0	-90
MM50	40,932	40,082	6,357	70	0	-90
MM51	40,977	40,065	6,361	60	0	-90
MM52	41,032	40,043	6,371	60	0	-90
MM53	41,097	40,024	6,383	60	0	-90
MM54	40,784	40,646	6,450	140	0	-90
MM55	40,704	40,678	6,455	120	0	-90
MM61	40,650	41,059	6,430	100	0	-90
MM62	40,594	41,067	6,430	80	0	-90
MM63	40,749	41,043	6,435	60	0	-90
MM64	40,800	41,034	6,430	40	0	-90
MM65	40,851	41,026	6,435	20	0	-90
MM66	40,900	41,021	6,442	20	0	-90
MM67	40,778	40,933	6,430	120	0	-90

DHID	EAST	NORTH	ELEV	TD	AZIMUTH	DIP
MM68	40,728	40,939	6,435	80	0	-90
MM69	40,676	40,945	6,430	120	0	-90
MM70	40,629	40,952	6,430	80	0	-90
MM71	40,580	40,959	6,427	80	0	-90
MM72	40,530	40,965	6,419	100	0	-90
MM73	40,514	40,916	6,415	100	0	-90
MM74	40,752	40,806	6,440	130	0	-90
MM75	40,786	40,774	6,437	135	0	-90
MM76	41,035	40,672	6,450	150	0	-90
MM77	40,891	40,802	6,445	120	0	-90
MM78	40,907	40,855	6,447	110	0	-90
MM79	40,991	40,906	6,450	135	0	-90
MM80	40,436	40,798	6,435	200	0	-90
MM81	40,463	40,614	6,425	60	0	-90
MM82	40,470	40,663	6,435	60	0	-90
MM83	40,481	40,706	6,435	60	0	-90
MM84	40,488	40,762	6,445	60	0	-90
MM85	40,410	40,686	6,434	100	0	-90
MM86	40,348	40,751	6,434	110	0	-90
MM87	40,279	40,815	6,425	120	0	-90
MM89	40,780	41,144	6,428	80	0	-90
MM90	40,575	41,171	6,419	80	0	-90
MM91	40,721	41,096	6,423	60	0	-90
MM92	40,962	40,753	6,450	200	0	-90
MM93	41,048	40,710	6,450	150	0	-90
MM94	41,119	40,661	6,450	160	0	-90
MM95	40,386	40,771	6,435	120	0	-90
MM96	40,318	40,849	6,425	140	0	-90
MM97	40,183	40,919	6,410	140	0	-90
MM98	40,213	40,961	6,410	120	0	-90
MM99	40,227	40,862	6,413	140	0	-90
RC2	40,703	40,428	6,417	200	0	-90
RC3	40,527	40,415	6,397	155	0	-90
RC4	40,465	40,574	6,419	155	0	-90
RC5	40,315	40,609	6,404	85	0	-90
RC6	40,199	40,768	6,416	135	0	-90
RC7	41,048	40,783	6,458	135	0	-90
RC8	41,108	40,715	6,459	175	0	-90
RC9	40,531	41,150	6,416	180	0	-90
SIN21	40,575	40,403	6,395	175	0	-90
SS-1	41,811	39,740	6,481	35	0	-90
SS-2	41,871	39,699	6,488	45	0	-90
SS-3	41,703	39,765	6,476	55	0	-90
SS-4	41,267	39,979	6,453	125	0	-90
SULPHIDE-	41,180	40,025	6,370	270	0	-90
Z29	41,694	39,831	6,484	120	0	-90
Z3	41,440	39,997	6,484	25	0	-90
Z30	41,592	39,899	6,485	40	0	-90
Z32	41,607	39,814	6,475	100	0	-90

Appendix B

Oxidation Data

Skewness Range Minimum Maximum Count

All Samples				
Mean Tcu	0.523			
Standard Error	0.017			
Median	0.376			
Mode	0.005			
Standard Deviation	0.568			
Sample Variance	0.322			
Kurtosis	15.048			
Skewness	3.064			
Range	5.140			
Minimum	0.003			
Maximum	5.143			
Count	1134			

Ratio <= .25		Ratio > .2
Mean Tcu	0.582	Mean Tcu
Standard Error	0.023	Standard Error
Median	0.417	Median
Mode	0.450	Mode
Standard Deviation	0.592	Standard Deviation
Sample Variance	0.350	Sample Variance
Kurtosis	16.547	Kurtosis
Skewness	3.266	Skewness
Range	5.139	Range
Minimum	0.004	Minimum
Maximum	5.143	Maximum
Count	649	Count
Ratio <= .5		Ratio > .
Mean Tcu	0.558	Mean Tcu
Standard Error	0.021	Standard Error
Median	0.403	Median
Mode	0.008	Mode
Standard Deviation	0.600	Standard Deviation
Sample Variance	0.360	Sample Variance
Kurtosis	15.126	Kurtosis

Ratio > .25	
Mean Tcu	0.445
Standard Error	0.024
Median	0.313
Mode	0.005
Standard Deviation	0.525
Sample Variance	0.276
Kurtosis	11.428
Skewness	2.714
Range	4.180
Minimum	0.003
Maximum	4.183
Count	484

	Ratio > .5		
0 550			
0.558	Mean I cu	0.43	
0.021	Standard Error	0.020	
0.403	Median	0.313	
0.008	Mode	0.00	
0.600	Standard Deviation	0.45	
0.360	Sample Variance	0.21	
15.126	Kurtosis	6.79	
3.128	Skewness	2.21	
5.139	Range	2.98	
0.004	Minimum	0.00	
5.143	Maximum	2.98	
829	Count	30	

Composites in Mineralized Zone		Bin	Frequency;	umulative %
		0	54	2.33%
Mean	0.491	0.05	137	8.24%
Standard Error	0.011	0.1	90	12.12%
Median	0.340	0.15	206	21.00%
Mode	0.000	0.2	201	29.67%
Standard Deviation	0.509	0.25	189	37.82%
Sample Variance	0.259	0.3	158	44.63%
Kurtosis	7.834	0.35	160	51.53%
Skewness	2.427	0.4	139	57.52%
Range	3.983	0.45	108	62.18%
Minimum	0.000	0.5	115	67.14%
Maximum	3.983	0.55	81	70.63%
Count	2319	0.6	78	74.00%
		0.65	66	76.84%
		0.7	54	79.17%
		0.75	52	81.41%
		0.8	51	83.61%
		0.85	34	85.08%
		0.9	34	86.55%
		0.95	27	87.71%
		1	21	88.62%
		1.05	21	89.52%

90.13%

90.77%

91.25%

91.89%

92.80%

93.32%

93.79%

94.35%

94.70%

94.95%

95.17%

95.39%

95.77%

96.12%

96.55%

96.81%

97.15%

97.50%

97.67% 54 100.00%

14

15

11

15

21

12

11

13

8

6

5

5

9

8

10

6

8

8

4

1.1

1.2

1.25

1.3

1.35

1.45

1.5

1.55

1.6

1.65

1.7

1.8

1.9

2

1.85

1.95

More

1.75

1.4

1.15

All Oxide in Mineralized Zone		Bin	Frequency	umulative %
		0	25	2.26%
Mean	0.414	0.05	64	8.04%
Standard Error	0.012	0.1	58	13.28%
Median	0.300	0.15	112	23.40%
Mode	0.000	0.2	112	33.51%
Standard Deviation	0.402	0.25	96	42.19%
Sample Variance	0.161	0.3	91	50.41%
Kurtosis	9.891	0.35	76	57.27%
Skewness	2.474	0.4	66	63.23%
Range	3.908	0.45	51	67.84%
Minimum	0.000	0.5	56	72.90%
Maximum	3.908	0.55	34	75.97%
Count	1107	0.6	37	79.31%

0.35	76	57.27%
0.4	66	63.23%
0.45	51	67.84%
0.5	56	72.90%
0.55	34	75.97%
0.6	37	79.31%
0.65	31	82.11%
0.7	22	84.10%
0.75	20	85.91%
0.8	19	87.62%
0.85	15	88.98%
0.9	19	90.70%
0.95	11	91.69%
1	6	92.23%
1.05	8	92.95%
1.1	6	93.50%
1.15	3	93.77%
1.2	7	94.40%
1.25	10	95.30%
1.3	10	96.21%
1.35	4	96.57%
1.4	1	96.66%
1.45	4	97.02%
1.5	3	97.29%
1.55	0	97.29%
1.6	3	97.56%
1.65	4	97.92%
1.7	3	98.19%
1.75	3	98.46%
1.8	3	98.74%
1.85	3	99.01%
1.9	1	99.10%
1.95	0	99.10%
2	0	99.10%
More	10	100.00%

All Sulfide in Mineralized Zone		Bin Frequ	uer
		0	
Mean	0.562	0.05	
Standard Error	0.017	0.1	
Median	0.379	0.15	
Mode	0.000	0.2	
Standard Deviation	0.582	0.25	
Sample Variance	0.339	0.3	
Kurtosis	5.715	0.35	
Skewness	2.183	0.4	
Range	3.983	0.45	
Minimum	0.000	0.5	
Maximum	3.983	0.55	
Count	1212	0.6	

More

Appendix C

Drillholes with Questionable Intervals

Drillholes with Questionable Intervals

DHID	EAST	NORTH	ELEV	TOTAL DEPTH
9	41382.7	39966.1	6465	60
10	41444.4	39924.6	6465	50
11	41501.3	39887.2	6469	45
12	41467.5	39849.6	6461	85
13	41427.6	39802.9	6460	115
15	41392.2	39759.9	6465	145
17	42105.4	40001.2	6480	55
18	42040.7	39872.2	6480	55
115-5	41014.4	40031.5	6434	175
55-4	41418.8	39737	6465	175
9-23C	41208.6	39869.5	6413	110
AA2	40184.2	41153.7	6403	280
AA3	40355.2	41167.6	6407	240
AA6	41310.5	40504.7	6456	150
AA7	41522.6	40725.6	6495	150
AA8	41581.8	40766.7	6490	200
M100	42006.7	39897.7	6482	300
M101	41836.1	39920.7	6494	260
M102	41910.8	39881.3	6491	260
M103	41990.8	39991.9	6481	260
M104	42009	39793.8	6481	240
M105	42053.6	40009	6479	200
M106	42080.6	39828.5	6480	190
M107	42161.6	39870.5	6480	200
M108	42256.6	39918.5	6485	200
M109	42215.4	39833.4	6479	220
M110	42255	39999.9	6490	60
M111	42138.9	39781.9	6480	220
M112	42066.4	39725.2	6491	200
M113	42414	39954.7	6496	220
M114	42328.1	39960.8	6493	170
M115	42423	39929.7	6493	140
M116	42419	40001.4	6502	150
M117	42506.6	39969.4	6502	180
M118	41842.2	40031	6487	250
M119	41929.6	40077.6	6481	235
M120	42023.8	40107	6481	185
M121	42157.7	40054.3	6483	70
M122	42145.6	40143.7	6485	185
M123	42236.3	40076.7	6485	195
M124	42275.2	39887.7	6482	220
M125	41777	40105.4	6477	190
M126	41854.8	40156.6	6476	145
M128	42366.1	39801.3	6483	260
M129	42301.4	39724.7	6479	200
M14	41654.6	39694.6	6477	90
MM100	40113.5	40985.7	6410	140
MM101	40337.5	40888.8	6423	120
MM102	40391.7	41075.7	6410	140
MM103	40401	41113.5	6408	150

DHID	EAST	NORTH	ELEV	TOTAL DEPTH
MM104	40409.7	41215.6	6404	120
MM105	40420	41270.6	6400	160
MM106	40250.4	40913.7	6412	120
MM107	40380.3	40642	6418	140
MM108	40342.4	40674.2	6429	140
MM109	40307.8	40704.6	6423	140
MM110	40250.4	40749.7	6420	150
MM111	40454.3	40574.3	6415	115
MM112	40538.7	40508.4	6411	120
MM113	40556.4	40540.3	6420	80
MM114	40590.5	40506.5	6414	90
MM115	40629	40476.7	6450	100
MM116	40530	40619	6440	90
MM13	41845.5	40053.4	6484	235
MM14	41900.8	40098.7	6479	240
MM16	41967.8	40119.7	6476	240
MM17	41867.2	40171.7	6476	235
MM18	41912.1	40199.8	6474	235
MM19	41703.8	40333.3	6466	50
MM20	41717.7	40355.2	6468	50
MM21	41730.1	40376.8	6470	35
MM22	41738.9	40400.4	6471	20
MM23	40930.8	40002.1	6343	110
MM24	40944.6	40032.4	6343	65
MM25	41150	39919.2	6360	75
MM26	41112	39869	6461	85
MM27	40605.9	40336.6	6435	20
MM28	40718.7	40187.2	6338	100
MM29	41345.8	39817.9	6460	100
MM30	41296	39851.2	6461	100
MM31	41245.5	39882.1	6367	100
MM32	41194.4	39913.3	6366	100
MM33	41035.3	39958.1	6355	95
MM34	41020.5	39992.6	6351	80
MM35	40915.3	40062.5	6343	90
MM36	40866	40093.3	6341	100
MM37	40835.3	40139.2	6336	120
MM38	40770.7	40153	6333	100
MM39	40633.8	40280.8	6350	120
MM40	40410.9	40475.2	6385	110
MM41	40372	40524.1	6395	140
MM42	40457.5	40441.9	6380	140
MM43	40504.5	40405.8	6370	140
MM44	40552.1	40365	6364	150
MM45	40576.7	40463	6411	125
MM46	40523.4	40491.5	6413	130
MM47	40488	40513.2	6413	130
MM48	40429.9	40549.8	6415	120
MM49	40387.8	40578.2	6425	120
MM5	42037.5	40341.7	6455	200
MM50	40931.6	40082.1	6357	70

DHID	EAST	NORTH	ELEV	TOTAL DEPTH
MM51	40977.3	40064.6	6361	60
MM52	41031.6	40043	6371	60
MM53	41097.2	40023.6	6383	60
MM54	40784.2	40646.3	6450	140
MM55	40704.4	40678	6455	120
MM61	40649.8	41059.3	6430	100
MM62	40593.8	41067.1	6430	80
MM63	40749	41042.5	6435	60
MM64	40799.9	41033.6	6430	40
MM65	40850.6	41025.6	6435	20
MM66	40899.6	41021.2	6442	20
MM67	40778.2	40932.7	6430	120
MM68	40727.5	40939.4	6435	80
MM69	40675.8	40945.3	6430	120
MM70	40629.2	40951.6	6430	80
MM71	40579.8	40958.6	6427	80
MM72	40529.5	40965.4	6419	100
MM73	40513.7	40916.2	6415	100
MM74	40751.9	40805.9	6440	130
MM75	40786.1	40773.8	6437	135
MM76	41035.4	40672.4	6450	150
MM77	40891.1	40802.1	6445	120
MM78	40906.9	40855.2	6447	110
MM79	40990.7	40905.7	6450	135
MM80	40436.1	40797.9	6435	200
MM81	40462.5	40613.8	6425	60
MM82	40470.4	40663.4	6435	60
MM83	40480.9	40706	6435	60
MM84	40488	40762.3	6445	60
MM85	40410.4	40685.5	6434	100
MM86	40348.2	40751.3	6434	110
MM87	40279.1	40815.2	6425	120
MM89	40779.6	41144.2	6428	80
MM90	40574.9	41171.1	6419	80
MM91	40720.5	41096.3	6423	60
MM92	40961.6	40753	6450	200
MM93	41048.3	40709.9	6450	150
MM94	41119	40660.5	6450	160
MM95	40386.2	40770.9	6435	120
MM96	40318	40849.1	6425	140
MM97	40183.1	40919.1	6410	140
MM98	40212.7	40960.6	6410	120
MM99	40227.1	40862	6413	140

DHID	FROM	ТО	TCU
MM32	0	5	0
MM32	5	10	0
MM32	10	15	0
MM32	15	20	0
MM32	20	25	1.280
MM32	25	30	2.285
MM32	30	35	2.550
MM32	35	40	1.320
MM32	40	45	5.425
MM32	45	50	4.370
MM32	50	55	1.010
MM32	55	60	0.800
MM32	60	65	0
MM32	65	70	0
MM32	70	75	0
MM32	75	80	0
MM32	80	85	0
MM32	85	90	0
MM32	90	95	0
MM32	95	100	0

Typical Drillhole with Questionable Intervals

Appendix D

Variography

Zone 2: Indicator Variography

Zone 2, South, Major Axis

Zone 2, North, Major Axis

Zone 2, South and North, Semi-Major Axis

Zone 1: Indicator Variography

Zone 1, South, Major Axis

Zone 1, North, Major Axis

Zone 1, South and North, Semi-Major Axis

Zone 1: Copper Kriging Variography

Zone 1, South, Major Axis

Zone 1, North, Major Axis

Zone 1, South and North, Semi-Major Axis

Zone 2: Copper Kriging Variography

Zone 2, South, Major Axis

Zone 2, North, Major Axis

Zone 2, North and South, Semi-Major Axis

